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Abstract Common forms of metabolic and cardiovascular
diseases involve the interplay of numerous genes as well as
important environmental factors. Traditional biochemical
and genetic approaches generally attempt to dissect these
diseases one gene at a time, for example, by analysis of
Mendelian forms or genetically engineered experimental
organisms. But, it is also important to understand how the
genes interact with each other and the environment, and
how these interactions change in disease states. Technologi-
cal advances, such as the development of expression arrays
that allow quantification of all transcript levels in a cell or
tissue, have made it feasible to globally monitor molecular
phenotypes that underlie disease states. By applying statis-
tical methods, relationships between DNA variation, gene
expression patterns, and diseases can be modeled.—Wu,
S., A. J. Lusis, and T. A. Drake. A systems-based framework
for understanding complex metabolic and cardiovascular
disorders. J. Lipid Res. 2009. S358–S363.
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Common forms of metabolic and cardiovascular dis-
eases are exceptionally complex. Although only a small
fraction of the underlying genes has been identified, it
seems likely that common or rare variants of hundreds
or even thousands of genes will be involved (1, 2). And,
of course, environmental factors such as overnutrition,
sedentary lifestyle, and smoking play a crucial role. Most
biochemical and genetic studies to date, such as those
involving transgenic animals, have focused on identifying
and characterizing the individual genes that contribute
to disease (3). Likewise, genome-wide association and
other genetic approaches typically focus on finding the
specific genes responsible for the association (4). While
these approaches continue to be informative, it is also
important to address the interactions between genes
and the environment (5). In this brief review, we discuss
how systems-based approaches involving the integration

of genomic, molecular and physiological/clinical data,
can complement traditional approaches to address the
complexity of these disorders.

A systems perspective on disease envisions the integra-
tion of multiple elements, from genome through pheno-
type as depicted in Fig. 1. The technological advances
that allow large-scale and high-throughput quantifica-
tion of elements at each level are critical. Thus far, only
genome and transcriptome come near the level neces-
sary, and so we focus on these as exemplary of the sys-
tems approach.

IDENTIFYING DISEASE-ASSOCIATED GENES BY
INTEGRATING GENETIC AND GENE

EXPRESSION INFORMATION

Candidate gene studies and recent genome-wide asso-
ciation studies have identified an impressive list of genes
contributing to complex disorders such as atherosclerosis
(6), hyperlipidemia (7, 8), obesity (9), and diabetes (10),
but altogether these account for a minority of the genetic
effect on disease development. This suggests that many
genes carrying small to modest effect contribute to com-
plex disease, as has long been postulated. The established
biology underlying these disorders has identified at least
hundreds of genes for each. Genetic studies in humans
and animal models have made significant contributions to
elucidating the pathogenesis of complex diseases, though
the number of specific genes identified has been only a
fraction of the total expected to be involved for any given
disease. Accordingly, one of the major challenges in study-
ing complex disease is to understand how genes that carry
causal variants interact with each other, and with “down-
stream” genes, to regulate disease expression.

Traditional genetic studies in humans or animal models
establish the relationship between genotype and pheno-
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type, but provide little inference as to the intervening
biology or, correspondingly, guidance for selecting likely
causative genes. Incorporating global gene expression
analyses into genetic studies has significantly enhanced
both these aspects (1, 11, 12). Gene expression can be
measured as a quantitative trait and has been observed
to be highly heritable (12–14). Linkage or association
analysis can be employed to identify genetic loci or single
nucleotide polymorphisms perturbing abundance and
activity of gene products. The linkage-based identification
of loci for gene expression is termed eQTL (expression
quantitative trait locus) mapping, and the same concept
can be extended to discover single nucleotide polymor-
phisms associated with transcript abundance, termed eSNP
(expression single nucleotide polymorphism) (15, 16). Ob-
servation of eQTL for a gene indicates that genetic factors
are partially responsible for its transcript abundance. Based
on proximity between genetic factors influencing gene
expression and the location of the gene, eQTL can be cat-
egorized as cis- or trans-eQTL. When an eQTL localizes
closely to the location of the gene coding the transcript,
it is likely that the causative genetic variations resides within
the gene or its regulator elements and directly influence
transcription, or transcript stability, acting in a cis manner,
and thus termed cis-eQTL. Conversely, when eQTL does
not encompass the physical location of the gene and flank-
ing regions, the gene is defined as being regulated in trans
manner, termed trans-eQTL (Fig. 2A). In several genetic
crosses between inbred strains of mice, hundreds or thou-
sands of expressed genes in a given tissue have at least one
eQTL, including both cis and trans ones. Among all ob-
served eQTLs in crosses of several hundred or more mice,
the total number of trans-eQTL is approximately 10 times
higher than cis-eQTL.

Cis-acting eQTL are obvious candidates for genes under-
lying a phenotypic trait (the quantitative trait gene or
QTG) when the eQTL and the trait quantitative trait loci
analysis (QTL) coincide. Though causative mutations may
not act by altering transcript levels, many do. Applying this
concept can significantly reduce the time and effort in-
volved in positional cloning of genes. For example, this
was a critical factor in our discovery of Abcc6 as the major
causal gene in cardiac calcification in a genetically random-

ized mouse population (17). Coincidence of trans-eQTL
and trait QTL may also be informative for downstream
genes involved in trait expression as discussed below.

INTEGRATIVE GENETICS ALLOWS
CAUSAL INFERENCE BETWEEN

TRAIT-TRANSCRIPT CORRELATIONS

The application of global gene expression analyses to
studies of cells and tissues has provided a wealth of data
relevant to complex diseases. Finding statistically signifi-
cant correlations between a trait and particular genes sug-
gests a biologic relationship between them (18, 19). Many
databases and analytical tools have been developed to help
identify and characterize which functional classes of genes
may be involved in a given process. Gene Set Enrichment
Analysis (20), Database for Annotation Visualization and
Integrated Discovery (21, 22), and Ingenuity Pathway Anal-
ysis are analytical tools developed to test the enrichment of
particular biological processes and molecular functions of
gene sets by examining information collected by databases
such as Gene Ontology and Kyoto Encyclopedia of Genes
and Genomes pathway.

However, as has long been recognized in statistics, cor-
relation does not prove causality. In complex diseases,
genes may be correlated with a given trait because they
are directly involved in the development of that process
(i.e., “causal”) or because the process itself secondarily
alters the expression of the genes (“reactive”). A major
contribution of integrative genetics has been the develop-
ment of analytical tools to allow causal inferences to be
made between correlated genes and traits when genetic
data are incorporated (23, 24). This is elaborated in
Fig. 2B, which shows possible relationships between trait,
transcript, and genetic location when correlations among
these are observed. Because genetic variation is for prac-
tical purposes always primary, this can be utilized to order
the relationship between transcript and trait.

Several analytical approaches have been proposed to
assess potential causality in this setting, and undoubtedly
more will be developed given the importance of the prob-
lem. Schadt et al. (23) developed the likelihood-based

Fig. 1. A systems perspective of complex disease encompasses integrated analysis of quantitative measure-
ments at each level depicted.
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causality model selection procedure and applied it to pre-
dicting liver expressed genes causal for abdominal obesity
in a mouse intercross setting. Subsequent studies using
transgenic or knockout models have validated eight of
nine predicted genes. Structural equation modeling has
also been applied to assess directionality between corre-
lated traits and transcripts, termed edge orientation. An al-
gorithm based on this approach was developed by Aten
et al. (25), termed Network Edge Orientation.

CONSTRUCTING GENE EXPRESSION NETWORKS
FOR COMPLEX DISEASES

Rather than uncovering single genes for complex dis-
eases such as atherosclerosis, a systems-based perspective
is interested in elucidating the interactions of genes and
environment operating on a complex multicellular bio-
logical system (26). Such a systems approach involves mod-
eling the relationship among elements of the system, such

Fig. 2. Genetic loci controlling transcript levels and their application to causal modeling. A: Example of cis- and trans-acting expression
quantitative trait loci (eQTL) of Ucp2 transcript, obtained by integrating genetic and hepatic gene expression data from a genetically ran-
domized population. B: Examples of patterns employed in simplified causality inference model (single edge model, 1–3) and advanced
causality network (4–6). Blue dots (G): genetic marker; green dots (E): gene expression patterns; orange dots (C): clinical trait variation.
Light green dots (E) and pink dots (C): reactive or secondary gene expression patterns and clinical trait variations respectively. In model 6,
black arrows between G and primary E indicate the cis-acting, while the blue ones indicate trans-acting relationships.
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as transcript levels in the form of a network. Two major
modeling approaches have been employed to decipher
network patterns underlying complex traits: forward and
reverse engineering. Forward approaches apply a set of
equations generated a priori from previously defined bio-
logic relationships that are then tested and revised as
needed. This approach generally is used with small-scale
network formation. The reverse approach does not apply
a predefined set of relationships. Rather it utilizes general
mathematical tools for network construction and lets the
data itself define the relationships among the elements
being studied, such as transcript level (27). This approach
typically utilizes large data sets and is computationally in-
tensive. In the setting of data obtaining from populations
with genetic and or environmental variations, such analyses
allow one to infer the relationship and interaction among
all such elements. This is valuable for studying complex
diseases, because we do not yet adequately understand the
relationships between gene expression and trait variability.

Network analysis provides a useful framework to identify
and visualize interactions among genes, by creating a graphic
model. A network is composed of elements, such as specific
gene transcripts (referred to technically as nodes), and
connections (relationships) among these (“edges”). Edges
can indicate a relationship between genes as at transcript
level, protein interaction pattern, and any other measure-

ment that describes a meaningful association between two
elements of the system. A gene transcriptional network is
composed of individual gene transcripts as nodes, while
the edges represent a measure of pair-wise correlation of
transcript levels. A given gene can correlate with multiple
genes, and a measure of the relative number of such con-
nections is referred to as connectivity (28, 29). An impor-
tant feature of network constructed with biological data is
the “scale-free” nature. In a scale-free network, there is a
small number of highly connected genes and many more
with far fewer connections. Such highly connected genes
are often referred to as hubs. Targeting hub genes have
been found to disrupt the structure of gene networks and
are more likely to impact biological processes when dis-
rupted in animal models. For example, in our analyses of
coexpression networks for activated endothelial cells,
Atf4, Xbp1, and Insig1 were identified as hub genes (among
others) (30). Targeted knockout of these genes had been
shown to be lethal in mouse models (31–34).

Similar to other biologic networks, genes in coexpres-
sion networks are found to organize into “modules,” which
are clusters of genes that have higher degree of connect-
edness with other members of the same module than with
genes in different modules (29). Genes composing a mod-
ule therefore tend to behave more similarly to one another
with regard to correlation with phenotypes (Fig. 3) and are

Fig. 3. Network construction approach reveals molecular signatures associated with complex diseases.
Association network comprising gene modules (small nodes) and edges (connecting lines) was constructed
by k-mean clustering method with gene expression profile in whole livers of a genetically randomized mouse
population. Blue and orange edges represent positive and negative correlation between modules. Pheno-
types related to metabolic and cardiovascular diseases were selected in this figure to indicate that examining
molecular signatures at transcript level can reveal trait interconnectedness. Purple and orange modules rep-
resent unique and common modules among relevant phenotypes in the network (unpublished work).
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often enriched for particular functional categories of genes.
Using data-reductionmethods such as principle component
analysis, the aggregate of genes in a module can be charac-
terized by a single value to use for such analyses (35). One
example from our work is the identification of the unfold
protein response (UPR) pathway as being important in the
response of endothelial cells to oxidized lipids. Coexpres-
sion networks were constructed of transcripts induced by
oxPAPC in primary endothelial cells isolated from human
aorta (30, 36). Two of fifteen modules were strongly corre-
lated with interleukin-8 induction. These modules were en-
riched for UPR pathway genes, and several of the most
highly connected genes were members of the UPR path-
way. Knockdown experiment with certain UPR genes re-
vealed the role of the URP pathway in the regulation of
interleukin-8 and other cytokines. In other experiments,
a hub gene in the UPR module, MGC4504, proved to con-
tribute to an apoptosis response. These findings led to the
discovery of a novel gene that is critical for UPR function in
this process, based on it being a hub gene in the same mod-
ule and closely associated with known UPR genes. By tradi-
tional analyses, it mostly would not have been recognized as
being particularly important.

One promising approach to reconstruct a directed gene
network is the Bayesian Modeling approach. Instead of ex-
amining strictly the gene connectivity and module forma-
tion, Bayesian modeling is useful in leveraging genetic
information to infer causality among genes in the directed
network (39). As a probabilistic model approach, Bayesian
network reconstruction utilizes posterior probability to
map traits with particular markers to exploit the increased
information from joint mapping of correlated transcripts.
Yang et al. have incorporated the genetic data into Bayesian
networks for hepatic gene expression from genetically ran-
domized mouse populations, using the likelihood-based
causality model selection approach described above for
causal gene detection (Yang et al., in press). This provides
a significant improvement over the gene coexpression net-
work constructed without the genetic data by incorporating
predicted causal relationships among genes. Such “directed”
networks can elucidate the mechanisms underlying phe-
notypes by which causal regulators give rise to changes in
expression activity of various genes. More recently, using
expression data from a genetically randomized yeast popu-
lation, Zhu et al. (40) integrated noisy protein interaction
data collected from various sources as well as genetic infor-
mation into gene expression network by applying Bayesian
modeling approach.

Recently, a genome-wide functional network for mouse
population has also been established and validated, with
which Bayesian integrative modeling brings the protein in-
teraction pattern together with gene expression profiles to
illustrate the network including probabilistic functional
linkages among over 20,000 genes (38). In addition to
Bayesian probabilistic models, there are various ways to in-
tegrate biological information, especially transcriptional
regulatory mechanisms into gene network underlying
complex diseases. Success in identifying critical regulators
have been demonstrated in various organisms by employ-

ing integrative genetics approaches (41). Furthermore, the
involvement of tissue specificity and sex effect in complex
disease pathogenesis can also provide further informa-
tion in personalized medicine in the assist of systems biol-
ogy approaches.

We are a long way from understanding complex dis-
eases from a systems perspective. However, the use of
high-throughput global gene expression assays in the con-
text of genetic analyses has shown how an integrative ge-
netics approach can reveal higher order interactions for
traits as complex as diabetes and heart disease (1, 2, 5, 8).
As analogous methods for the metabolomic and proteomic
elements are developed, progressively richer models of
complex disease will be developed (42, 43).
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